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Denser and highly magnetized ferrofluids exhibit several non-Newtonian behaviors attributed to the forma-
tion of magnetic particle chains. We investigate the rheological and adhesive properties during tensile defor-
mation of a confined chain-forming ferrofluid subjected to a radial magnetic field. Both the magnetoviscous
contribution to the viscosity and the adhesive force are derived analytically. The response of the system to
changes in the length of the chains is examined under zero and nonzero shear circumstances. Our results
indicate that the existence of chains has a significant impact on the adhesive strength as well as on the viscosity
of the ferrofluid, allowing it to display both shear-thinning and shear-thickening regimes. These findings open
up the possibility of monitoring complex rheological responses of such fluids with the assistance of applied
magnetic fields, allowing a more accurate assessment of their adhesive properties.
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I. INTRODUCTION

The detailed understanding of a number of adhesion pro-
cesses is made difficult by the inherent complexity of adhe-
sive materials. Typical adhesives are based on weakly
crossed-linked high-molecular weight polymers and present
very intricate rheological properties, many of them often not
fully known �1,2�. A convenient way of approaching the
complicated effects in conventional soft adhesives has been
recently tackled by some research groups which examined
the fundamentals of adhesion in viscous fluids �3–10�. In
these studies it has been demonstrated that, although fluids
are not, rigorously speaking, “true” adhesives they present
physical properties that are quite similar to the ones of regu-
lar soft adhesives. Initially, the simplest situation of Newton-
ian fluids has been considered, and then different levels of
rheological complexity have been added to gain some appre-
ciation for the fluid nature of more traditional adhesive pro-
cesses.

One efficient and relatively simple method to access and
characterize important adhesive properties both in conven-
tional adhesives as well as in viscous fluids is provided by
the so-called probe-tack test �11,12�. In the “plate-plate” ver-
sion of this test a sample of material is first confined between
two parallel plane plates, and then the upper plate is lifted at
a known rate while the applied force is recorded. When the
upper plate is lifted, the pressure gradient causes an inward
viscous shearing flow in the plane of the adhesive or fluid
film, producing a downward adhesive force normal to the
upper plate. The result is a force-distance curve that quanti-
fies the adhesive strength of the sample under tension as a
function of the upper plate displacement. The debonding
studies performed in Refs. �3–10� have made ample use of
the probe-tack test to gain insight into the adhesive proper-
ties of viscous fluids.

Among the investigations that consider the fluid nature of
adhesion, one is particularly compelling, in the sense that it
addresses adhesion phenomena in magnetic fluids �10�. In

contrast to Refs. �3–9� in which the fluid under study is non-
magnetic, in Ref. �10� the material is a viscous Newtonian
ferrofluid subjected to an external magnetic field. Ferrofluids
�13,14�, which are stable colloidal suspensions of magnetic
nanoparticles respond paramagnetically to applied magnetic
fields. The interplay between fluid dynamic and magnetic
contributions in ferrofluids leads to various interesting field-
induced behaviors and pattern formation processes. It has
been shown �10� that, contrary to conventional adhesive ma-
terials, the adhesive properties of a ferrofluid can be en-
hanced or reduced by varying the intensity or symmetry con-
figuration of externally applied magnetic fields. Another
possibility of magnetically tuning the system can be accom-
plished by manipulating the material properties of the ferrof-
luid. All this established a suggestive connection between
adhesion and ferrohydrodynamic phenomena, allowing the
control of important adhesive properties by magnetic means.

However, no systematic study of the adhesion phenomena
in ferrofluids focusing on the role of their rheological prop-
erties or possible non-Newtonian behavior has been under-
taken so far. In fact, the viscosity of the ferrofluid contem-
plated in Ref. �10� is assumed to be constant, and therefore
independent of the magnetic field. Consequently, the influ-
ence of eventual rheological effects related to field- and
shear-dependent changes in the viscosity of the magnetic
fluid �13–17� has not been considered. On the other hand, the
recent development of denser and more strongly magnetized
ferrofluids has revealed a wide range of non-Newtonian be-
haviors in these liquids, such as shear-thinning, shear-
thickening, normal stress differences, viscoelastic response,
and a varying �Trouton� elongational viscosity. These various
rheological manifestations have been scrutinized both ex-
perimentally �18,19� and theoretically �17,20–24� and are at-
tributed to the formation of short chains when the magnetic
particles are exposed to strong magnetic fields. This effect
can be modeled by a polydisperse ferrofluid consisted of a
small portion of larger particles forming short chains, caus-
ing the fluid to display non-Newtonian behavior, plus a large
portion of smaller particles which determine the overall mag-
netic properties of the fluid.

In this work we analyze the adhesion properties of a
chain-forming, non-Newtonian ferrofluid subjected to a spe-*jme@df.ufpe.br
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cifically designed magnetic-field configuration, which tends
to empower the action of magnetic effects as the inward
ferrofluid flow progresses during a probe-tack test. The in-
vestigation of this particular debonding event allows us to
examine how magnetic field, viscous shear, and short chain
formation affect the ferrofluid’s viscosity and its adhesive
strength. In a more general sense, in addition to helping for a
better understanding of non-Newtonian phenomena in mag-
netic fluids, our study bridges the research areas of adhesion,
rheology, and ferrohydrodynamics which are by themselves
vastly interdisciplinary.

II. ADHESION FORCE: MAGNETOVISCOUS AND
PARTICLE CHAIN-FORMATION EFFECTS

Figure 1 sketches the geometry of the probe-tack system.
We consider a non-Newtonian, incompressible ferrofluid of
viscosity � located between two narrowly spaced circular,
flat plates. The outer fluid is nonmagnetic and of negligible
viscosity. As in Refs. �3–5,10� we consider that the apparatus
has a spring constant denoted by k. One end of the lifting
apparatus moves at a specified constant velocity V, subject-
ing the upper plate to a pulling force F. The lower plate is
held fixed at z=0, where the z axis points in the direction
perpendicular to the plates. The initial plate-plate distance is
represented by b0 and the initial ferrofluid radius by R0. At a
given time t the plate spacing is b=b�t�, while the deforma-
tion due to the stretching of the apparatus is L−b, where L
=b0+Vt. Due to the compliance of the measurement appara-
tus, the actual plate spacing b is not necessarily equivalent to
L. Of course, in the case of a completely rigid apparatus we

have b=L and ḃ=V, where ḃ=db /dt.
The ferrofluid sample is subjected to a cylindrically radial

applied magnetic field given by �25,26�

Ha =
H0a

r
r̂ , �1�

where a is the radius of magnetic-field source, r is the radial
distance from the origin of the coordinate system �located at

the center of the ferrofluid sample�, H0 is a constant, and r̂ is
a unit vector in the radial direction. The experimental condi-
tions required to obtain such a radial magnetic field are dis-
cussed in Ref. �25�. Notice that this field configuration �Ha
�1 /r� is particularly convenient to examine the magnetic
field induced changes in the viscosity of the ferrofluid: dur-
ing the probe-tack test, as the plates separate and the mag-
netic fluid move radially inward, the magnetic field becomes
increasingly stronger inducing more significant magnetovis-
cous effects.

Our main goal is to calculate the pulling force F as a
function of displacement L, taking into account both hydro-
dynamic and magnetic contributions. First, we calculate F
analytically for the completely rigid case, and subsequently
we address the more realistic situation in which compliance
is taken into consideration, by performing a numerical cal-
culation. We follow Refs. �4,7� and derive F assuming that
the ferrofluid interface remains circular during the entire lift-
ing process, with time-dependent radius defined as R=R�t�.
Conservation of ferrofluid volume leads to the relation �R2

−a2�b= �R0
2−a2�b0.

If we assume that the upper plate is not being lifted fast
enough to incite any inertial effects, nor lifted high enough to
alter the system being of large aspect ratio �R�t��b�t�� a
modified Darcy’s law applies �10,27�,

v = −
b2

12�
� �p − �� , �2�

where v�r ,�� represents the quasi-two-dimensional flow be-
tween the separating plates, p is the hydrodynamic pressure,
and � denotes a magnetic pressure represented by a scalar
potential. The probe-tack test setup defines a particular type
of flow in which the velocity field is vorticity-free and can be
written �in polar coordinates� as v= �−�̇r /2,0�, where the

shear rate parameter �̇= ḃ /b quantifies the flow �or, elonga-
tion� rate.

Our first task is to compute the viscosity � appearing in
Eq. �2� and find out how it is influenced by the applied mag-
netic field, and also by other relevant effects connected to
magnetic particle chain-formation and viscous shear. We fol-
low Refs. �23,24,28� and assume that the total viscosity is
related to the normal stress difference at finite shear, sub-
tracted from its corresponding value at vanishing shear,

� = �0 + �m = −
�Trr − Trr��̇=0�

�̇
, �3�

where �0 denotes the viscosity at zero magnetic field and �m
represents the magnetoviscous contribution. We call the
reader’s attention to the fact that, unlike previous theoretical
studies �23,24�, our applied magnetic field is nonuniform,
possessing a radial gradient. Consequently, the basic rheo-
logical responses found in Refs. �23,24�, which are quite
sensitive to the symmetry properties of the imposed mag-
netic field, cannot be assumed a priori as valid for our sys-
tem.

The total stress tensor including viscous and magnetic ef-
fects is defined as �13,14,23,24�
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FIG. 1. �Color online� Diagrammatic representation of the
probe-tack apparatus, where a non-Newtonian ferrofluid of viscos-
ity � is confined between parallel plates and subjected to a radial
magnetic field. The surrounding fluid is nonmagnetic and inviscid.
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Tij = − p̃�ij + 2�0vij + HiBj −
1

2
��Mihj − Mjhi� − �2�Mihj

+ Mjhi�� , �4�

where �ik denotes the Kronecker delta function and the pa-
rameter p̃= p+�+�0H2 /2 with

� = �0�
0

H

MdH , �5�

where �0 denotes the magnetic permeability of free space. In
addition, vij = ��iv j +� jvi� /2, H is the magnetic field, B is the
magnetic-field induction, M is the magnetization, and h
=M /	−H, with 	 denoting the ferrofluid’s susceptibility.
The transport coefficient �2 �17�, which is a very important
quantity for our investigation, accounts for the influence of
the elongational flow, in the sense that the flow induced by
the lifting of the upper plate yields a torque acting on exist-
ing chains, interfering on the rheological properties of the
ferrofluid. The value of �2, which lies between 0 and 1, has
been related to the length of the magnetic particle chains
�20,29�, where �2→0 corresponds to chainless �single par-
ticle� ferrofluids, and �2→1 would be associated to the for-
mation of chains �in a polydisperse ferrofluid� with a mean
length of approximately five particles.

Another key ingredient for our calculation is the relax-
ation equation for the magnetization �17�

dMi

dt
+ �M 
 ��i − �2Mjvij = − �Mi − Mi

eq�/� , �6�

where �= ��
v� /2 is the vorticity of the flow, Mi
eq=	Hi is

a linear constitutive relation for the equilibrium magnetiza-
tion, and � is the relaxation time for the magnetization. Note
that if �2=0 Eq. �6� reduces to the classical relaxation equa-
tion derived by Shliomis �15,16�. Since in our present case
�=0, and considering the stationary situation for which
dM /dt=0, we can use Eq. �6� plus the fact that the tangential
component of H and the normal component of B are both
continuous at the fluid-fluid interface, to get

M = 	�Ha, �7�

with �=��	 ,�2 ,�=1 / �1+	+ ��2 /2��, where =��̇ defines
a dimensionless shear rate. Moreover, with the help of Eqs.
�5� and �7� we can write the proper scalar potential for the
radial field configuration as

��r� =
�0

2
	��1 − 	��Ha

2. �8�

At this point we have all elements we need to evaluate the
magnetoviscous contribution to the total viscosity. By substi-
tuting Eq. �7� into the formula for the total stress tensor Eq.
�4�, and then using the resulting expression for Trr into Eq.
�3� we obtain

�m = −
1

2

	�2�Ha
2

�1 + 	 + ��2/2��2�1 − �2 +
�2

2�1 + 	�	 . �9�

This expression reveals a suggestive coupling between the
magnetic particle chain formation parameter �2 and the di-

mensionless shear rate . Since 0��2�1 we notice that
�m�0, and tends to zero if the magnetic particle chains are
not formed ��2→0�. Therefore, the non-Newtonian character
of the ferrofluid is intimately related to the very existence of
chains. Furthermore, observe that in the limit of very small
shear �→0� �m assumes a simpler form, depending qua-
dratically on �2 ��m��2�1−�2��.

The determination of the pressure field is a fundamental
step toward the calculation of the adhesion force. Fortu-
itously, it can be readily computed by inserting Eq. �9� into
Darcy’s law Eq. �2�, and integrating with respect to r yield-
ing

p�r� =
3�0ḃ

b3 
�r2 − R2� −
�2�	�2a2H0

2

�0
�1 − �2

+
�2

2�1 + 	�	ln� r

R
� + ���r� − ��R�� + p�R� ,

�10�

where p�R� is the value of the pressure at the ferrofluid drop-
let boundary. To determine p�R� we use the fact that �=0 in
the nonmagnetic fluid, and the generalized pressure jump
condition which expresses the equilibrium condition on the
normal component of the local stress tensor across the fluid-
fluid interface �13,14�

n · �T · n = �� , �11�

where Tij is given in Eq. �4� and n denotes the unit normal
vector at the interface. The term at the right-hand side of Eq.
�11� represents the contribution related to surface tension and
interfacial curvature �. By utilizing Eqs. �11�, �7�, and �4� we
get

p�R� = p0 −
�0

2
	��1 + ��1 − 	��2�2

2�Ha
2�r=R, �12�

where p0 denotes the constant pressure outside the ferrofluid
droplet. In deriving Eq. �12�, as is common in this type of
adhesion phenomena �3–7�, we have neglected the surface
tension term.

The force exerted by the lifting machine on the upper
plate is calculated by integrating the total stress difference
above and below the upper plate, yielding

F =� �ẑ · Tff − ẑ · Tout� · ẑdA = �
a

R

�Tzz
ff �r� − Tzz

out�r��2�rdr ,

�13�

where ẑ is a unit vector in the z direction, Tff denotes the
total stress tensor at the ferrofluid surface in contact with the
upper plane, whereas Tout represents the corresponding stress
tensor due to the outer nonmagnetic fluid. The integration is
carried out over the cross-sectional area of the ferrofluid drop
A. Under such circumstances, by using Eq. �4� the evaluation
of Eq. �13� leads to a dimensionless force
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F =
ḃ

b5
�� − 1

�
�2

−
NN

�2 �� b

b0
�� − 1�

−
b2

b0
2 ln�1 + �� − 1�

b0

b
�	 + NB	���

�� − 1�
b

b0
+ �� − 1�

+ 	� ln�1 + �� − 1�
b0

b
�� , �14�

where �= �R0 /a�2, NN=�H0
2 /�0 is a non-Newtonian Bond

number related to the non-Newtonian character of the viscos-
ity, and NB= ���0H0

2a2� / �2k�� is a magnetic Bond number
for the radial magnetic-field configuration. The parameters �,
�=−2�m / ��Ha

2��0, and �=2−	�+��1−	��2�2
2�0

couple 	, , and �2. Similar to what is done in Refs. �3,4�,
in Eq. �14� lengths have been rescaled by �
= �3��0R0

4b0
2V /2k�1/6 and velocities by V. In addition, the

adhesion force is rescaled by k�. It is worth mentioning that
since we are dealing with the noncompliant situation, we

have b=L and hence ḃ=1. Equation �14� shows ḃ explicitly
in anticipation of our analysis of the compliant apparatus
situation.

Equation �14� for the adhesion force and Eq. �9� for the
magnetoviscous contribution to the total viscosity are central
results of this work. The basic physical effects present in the
adhesion force equation can be understood simply by look-
ing at the sign of the magnetic terms NN and NB. Positive
magnetic terms which are multiplied by NB in Eq. �14� lead
to increased adhesion while negative terms proportional to
NN lead to decreased adhesion. The first term on the right-
hand side of Eq. �14� is related to the usual purely viscous
contribution in the absence of any magnetic effects. The non-
trivial interplay of these contributions will dictate the final
outcome for the rheological and adhesive properties of the
non-Newtonian ferrofluid.

III. DISCUSSION

In order to strengthen the practical and academic rel-
evance of our theoretical study, we ensure that the values of
all relevant dimensionless quantities we utilize are consistent
with realistic physical parameters related to existing probe-
tack test instruments �3–7�, radial magnetic-field arrange-
ment �25�, and material properties of ferrofluids
�13,14,18–20,23,24,30–36�. We understand this could make
our work of broader interest and eventually help experimen-
talists to test the predictions of our theoretical model.

The real world parameters that reflect our theoretical re-
gime are now presented. For the typical parameters related to
probe-tack experiments we take �4,5�: k=3.0
105 N /m,
R0=5.0
10−2 m, b0=O�10−4�−O�10−3� m, and V=7.3

10−7 m /s. For the radial magnetic-field configuration �25�
we use a=5.0
10−3 m and H0=1.6
103 A /m. We note
that the strength of the radial magnetic field generated in Ref.
�25� is 1 order of magnitude larger than the one we use. It is
also worth pointing out that the plate dimensions of real

probe-tack instruments and the size of the radial magnetic-
field source are compatible. Although the practical imple-
mentation of this composed system �lifting apparatus
coupled to a magnetic-field source� might not be straightfor-
ward, it is in principle viable.

Since the magnetic susceptibility of ferrofluids varies in a
wide range, namely, from 1 to 80 �13,14,33–35�, we take
	=5 as a representative value. Moreover, we consider that
0.1 s���1 s �24,36�. In general, the viscosity of a ferrof-
luid can be tunable for almost any volume fraction of mag-
netic particles by properly choosing the viscosity of the car-
rier liquid. The higher the concentration of magnetic
particles the more viscous the ferrofluid becomes. Therefore,
current ferrofluids have viscosity ranging from 10−3 Pa s to
102 Pa s �13,14,30–32�. Here we choose a high viscosity
ferrofluid with �0=102 Pa s. By utilizing this set of physical
parameters we obtain the following characteristic dimension-
less quantities: NB=5.0
10−5, NN=2.5
103, and �=102.
Note that under such circumstances NN�NB, meaning that
the non-Newtonian contribution is of major impact to our
problem. The range of values we take for the dimensionless
shear parameter �0��50� is also in line those employed in
Refs. �18–20,23,24�. Unless otherwise stated these dimen-
sionless parameters will be used throughout this work.

A. Changes in the viscosity

In this section we look into the details of how the mag-
netic effects alter the adhesion force. In order to better un-
derstand the behavior of the adhesion force, first we examine
how the viscosity of the ferrofluid is affected by shear and
chain formation. Figure 2 illustrates how the magnitude of
the magnetoviscous contribution to the shear viscosity Eq.
�9� �in units of �Ha

2� varies as a function of the dimensionless
shear , with the chain formation parameter changing from
�2=0.1 to �2=0.9 in steps of 0.1. Lighter color indicates
higher values of �2. First, we recall that since �m is negative
within the interval 0��2�1, the normalized magnetovis-

0 25 50
Ξ

0.006

0.012

0.018

�Η
m
�Τ

H
a2
�

Λ2�0.1

Λ2�0.9

FIG. 2. Magnitude of the normalized magnetoviscous contribu-
tion to the shear viscosity as a function of the dimensionless shear
. Here 0.1��2�0.9 in steps of 0.1. Lighter color means higher
values of �2. The dashed �solid� curves identify a shear thickening
�thinning� regime.
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cosity tends to decrease the value of the total viscosity �.
Notice that if �2�0.5 the magnitude of the magnetoviscosity
is an increasing function of �2. Physically, this can be ex-
plained on the basis of the alignment of the emerging chains
along the local magnetic field, favoring flow in the radial
direction. It is also evident that if �2�0.5 the normalized
magnetoviscosity decreases with increasing shear, clearly in-
dicating a shear-thinning behavior.

It is worth pointing out that, regardless the value of �2, all
the curves tend monotonically to zero with increasing shear.
This effect is somewhat expected since strong shear destroys
the chains, eliminating any non-Newtonian contribution.
Roughly speaking, this can be explained by the rupture of the
chains �which have been formed due to interparticle interac-
tion� due to strong viscous forces in the shear flow �19�.

On the other hand, if �2�0.5 the curves reach their maxi-
mum values at nonzero values of shear �=max�. Note that
all maxima correspond to the same value of the normalized
magnetoviscosity. The existence of these maxima leads to a
shear-thickening behavior for �max �dashed curves� and to
a shear-thinning situation for �max �solid curves�. Observe
that the shear-thickening effect is more significant for larger
�2 which implies in longer chains. These longer structures
are more susceptible to the torque exerted by the elonga-
tional flow, suppressing further stretching of the fluid, and
consequently leading to higher total viscosity �this happens
even at the zero shear situation�. In this region ��max� the
competition between torque and alignment of the chains re-
sults in shear thickening. However, if shear is further in-
creased ��max�, the chains tend to be destroyed, weaken-
ing the overall non-Newtonian effects, and promoting a
shear-thinning regime.

B. Adhesion force: Zero shear limit

We proceed by examining Fig. 3 that presents the force-
distance curves for thin layers of a non-Newtonian ferrofluid
at the zero shear limit �→0�. By taking this limit we focus

on the exclusive influence of magnetic particle chain forma-
tion on the adhesive force. Typical force-distance curves in-
crease sharply at initial stages of the plate separation process
�3–12�. For an ideal viscous Newtonian liquid, there is no
apparent physical reason for the actual force to start at zero,
increase quickly to a peak, and then decrease abruptly. How-
ever, this behavior can be described as a result of the elas-
ticity of the probe-tack apparatus �3,4�. We address this issue
and calculate the complete form of the force-distance curves,
considering the intrinsic rigidity of the lifting machine �com-
pliant apparatus situation�. To do it, we follow Refs. �3,4,10�
and assume that, during the entire separation process, there is
a perfect balance between viscous plus ferrohydrodynamic
forces and the spring restoring �dimensionless� force L−b
which results from the deflection of the apparatus. Using Eq.

�14� and the relation L=b0+ t we can write ḃ=db /dL so that

F�b, ḃ� = L − b . �15�

This nonlinear differential equation is solved numerically for
b�L� and we find the force curves from F=L−b�L�.

Figure 3 compares the force-distance curve for the case
without chain formation ��2=0, black curve�, and those in
which chains are formed ��2=0.5 and �2=0.8, darker and
lighter gray curves, respectively�. This is shown for a char-
acteristic initial plate spacing b0=1.5. The most interesting
feature of Fig. 3 is actually the role of chain formation in
determining the adhesion behavior as �2 is changed. As �2
varies from zero �black curve� to 0.5 �dark gray curve�, the
adhesion force is significantly reduced just by the action of
chain formation. In fact, there is a 80% shift between the
maxima of the force-displacement curves for �2=0 and �2
=0.5. Conversely, if �2 keeps increasing �0.5��2�1� the
opposite effect takes place, so that adhesion increases and
eventually the force tends to the chainless case described by
the black curve. The increase in the adhesion force is illus-
trated by the lighter gray curve for �2=0.8, which is shifted
by 65% with respect to the black curve. Note that hidden in
the black curve there are in fact two curves that simply over-
lap, namely, �2=0 and �2=1. Therefore, the zero shear situ-
ation is characterized by an “up and down” motion of the
force peaks as �2 varies from 0 to 1. These results indicate
real, potentially observable differences in behavior due to
chain formation, since a shift in data as small as 20% is
expected to be resolvable by current experimental techniques
�37�. In this sense, our modified probe-tack test could work
as a useful tool for detecting the presence of magnetic chain
formation in ferrofluids. In addition, it could also help to
estimate the approximate length of such structures.

A physical explanation for the phenomena depicted in
Fig. 3 can be attributed to the magnetoviscous contribution
to the shear viscosity as discussed in Fig. 2. In the zero shear
limit the coefficients � and � appearing in the third term on
right-hand side of Eq. �14� are independent of �2, so that all
the contribution due to the formation of chains comes exclu-
sively from the magnetoviscous effect produced by the term
multiplied by NN in Eq. �14�. As mentioned earlier in this
work, if =0 the magnetoviscous contribution to the shear
viscosity Eq. �9� reduces to a parabolic function of �2 in such

1.5 2.25 3
L

0.02

0.06

0.1
F

Λ2�0

Λ2�0.5

Λ2�0.8

FIG. 3. Adhesion force F for the compliant situation and zero
shear, as a function of displacement L, for the initial plate spacing
b0=1.5. The color labeling refers to distinct values of �2: 0 �black
curve�, 0.5 �dark gray curve�, and 0.8 �light gray curve�.
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a way it decreases �increases� if �2�0.5 ��2�0.5�. This jus-
tifies the behavior shown in Fig. 3 in which the adhesion
force decreases for �2�0.5 and increases otherwise. We
point out that this sort of argument is also valid for the non-
zero shear situation, as we will discuss in Sec. III C. The
parabolic behavior mentioned above is even clearer in Fig. 4
that plots the maximum value of the adhesion force �Fmax� as
a function of �2 for three different values of b0. It is also
evident that by modifying b0 no qualitative changes are ob-
served.

C. Adhesion force: Nonzero shear situation

We close our discussion by turning to the nonvanishing
shear situation and discuss how it can influence the adhesion
force. Rigorously speaking, the dimensionless shear rate is

given by = ḃ�L� /b�L�, being obviously a quantity that varies
with L, a fact that introduces some numerical difficulties for
the solution of the nonlinear differential Eq. �15�. However,
through a number of numerical tests we have checked that 
can be considered as a constant parameter in Eq. �15� if shear
is not too large ��50�. This assumption is consistent with
the typical values for the dimensionless shear rate used in
previous studies �23,24�. The action of  on the force peak
�Fmax� is illustrated in Fig. 5 for 0��2�1, and different
values of : 0, 2, 12, and 50. For zero shear, as commented
earlier, the magnetoviscous contribution for the viscosity var-
ies parabolically with �2, making Fmax to first decrease ��2
�0.5�, and then increase ��2�0.5� back to the chainless
case value. In general, the behavior of the peaks result from
the competition between the magnetoviscous contribution to
the adhesion force �second term on the right-hand side of Eq.
�14��, and the term proportional to NB in Eq. �14�. It is worth
noting that the magnetoviscous term tends to diminish the
adhesion force, whereas the other term tends to increase it.
Here, since NN�NB the magnetoviscous contribution takes
over.

From Fig. 5 it can also be noticed that for nonzero values
of shear the parabolic symmetry with respect to �2 is broken.

For �2�0.5 the value of Fmax always increases with , con-
sistently with the shear-thinning signature of the magnetovis-
cosity �m. On the other hand, for a given �2�0.5 and in-
creasingly larger shear, Fmax first decreases, reaches a
minimum value, and then increases. This behavior takes
place due to the transition from a shear-thickening to a shear-
thinning regime similarly to what was obtained in Fig. 2.
This happens as a result of the prevalence of the magneto-
viscous contribution to the adhesion force. If sufficiently
higher values of shear are considered, the magnitude of Fmax
will tend to the chainless case one. This occurs because
higher values of shear fragment the chains eliminating all
magnetic contributions.

Further illustration about the action of shear on the force-
distance curves can be seen in Fig. 6 which depicts F as a
function of L for two different values of : �a� 2, and �b� 12,
with b0=1.5. These curves should be contrasted with those
appearing in Fig. 3 that refers to the zero shear case �=0�,
and the same b0. If shear is finite and relatively small
�=2�, we notice from Fig. 6�a� that the adhesion force for
the lighter gray curve is clearly smaller than the correspond-
ing force strength for the zero shear case illustrated in Fig. 3.
Conversely, the dark gray curve is slightly shifted toward
larger values. Despite the fact that the minimum value of the
force peak is no longer at �2=0.5, the general up and down
motion of the peaks is still present. These findings can be
checked from the data shown in Fig. 5.

On the other hand, for larger values of shear �=12�, as
shown in Fig. 6�b�, the force drop is even more intense for
the lighter gray curve, so that now it lies below the dark gray
one. Note that the force peak of this curve ��2=0.5� is higher
than the equivalent position shown in Fig. 6�a�. This last
remark is also in agreement with our discussion of Fig. 5.
Differently from the =2 case the up and down motion of the
peaks does not occur, so that by increasing �2 the maxima of
the adhesion force decrease monotonically. Since in Fig. 6
the relative position of the gray curves are reversed as shear
is increased, it is evident that one can observe distinct behav-
iors for F depending on the shear regime under consideration
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FIG. 4. The maximum value of the adhesion force Fmax as a
function of �2, at the zero shear limit, for three values of b0: 1.3,
1.5, and 1.7.
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FIG. 5. The maximum value of the adhesion force Fmax as a
function of �2 for b0=1.5, and different values of : 0, 2, 12,
and 50.
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�low or high�. Of course, if shear is increased further the two
gray curves tend to overlap and coincide with the black one
��2=0� due to the fragmentation of chains.

IV. CONCLUDING REMARKS

We have investigated the rheological and adhesive re-
sponses of a chain-forming ferrofluid under tension submit-
ted to an applied radial magnetic field. For this situation we
have examined the interplay of magnetic, shear, and chain
formation effects in determining the adhesive strength of the
magnetic fluid sample. Our theoretical description is based
on a generalized Darcy’s law approach in which the fluid’s
total viscosity includes a magnetoviscous term that conve-
niently couples shear and magnetic contributions. One pecu-
liar aspect of this magnetoviscosity is its dependence on the
length of the magnetic particle chains formed. We have ob-
served that as the length of the chains is allowed to vary, the
non-Newtonian ferrofluid can display shear-thinning and
shear-thickening behaviors.

The adhesive force is calculated using Darcy’s law plus
an augmented version of the stress tensor which accounts for

the existence of short chains in the ferrofluid. We have stud-
ied the adhesive features of the magnetic sample under zero
and nonzero shear circumstances. In the zero shear limit, as
the length of the chains is increased, we have verified that the
adhesion force peak first decreases, reaches a minimum
value, and then increases back to the usual chainless situa-
tion.

Nevertheless, if shear is nonzero the dependence of the
adhesion force on the chain length varies with the magnitude
of shear. For small shear values the qualitative behavior of
the adhesion force curves is similar to the one observed for
the zero shear case. However, for intermediate values of
shear the up and down motion of the force peaks does not
occur. Instead, the force peaks become lower and lower for
increasingly larger values �2. Finally, at higher shear values
the chains tend to be destroyed, and consequently all adhe-
sion curves approach the chainless situation. All these results
indicate that probe-tack tests may become instrumental in
checking the existence of chains in ferrofluids, also provid-
ing a valid additional method to predict the length of these
structures.

Very recently, we have learned that a research group from
MIT, led by McKinley �38� has been conducting controllable
probe-tack experiments �in plate-plate geometry� using a
magnetorheological fluid subjected to an external magnetic
field produced by a small cylindrical magnet. Such a com-
plex magnetic fluid �39� exhibits a manifested yield stress
character which allows an increased resistance to shear load-
ing regulated by a magnetic field. In addition to its intrinsic
scientific and practical importance, this experiment substan-
tiates the plausibility of the magnetically controlled probe-
tack setup suggested in this work and also in Ref. �10�. In-
cidentally, recent stress controlled rheometer experiments
�40,41� show the appearance of a magnetic field-dependent
yield stress in ferrofluids. Although a theoretical study de-
scribing the interplay of yield stress, shear loading, magnetic
forces, and magnetic particle chain formation in ferrofluids
and magnetorheological fluids is certainly challenging, and
still not available, steps toward its theoretical understanding
seem as a natural extension of our current work.

In summary, we have shown that the inclusion of the mag-
netic particle chain formation considerably enriches the rheo-
logical properties of the system, leading to the occurrence of
interesting adhesive phenomena in magnetic fluids. Our the-
oretical results point to tangible, potentially observable dif-
ferences in behavior due to chain formation, adding to the
general discussion of the question of magnetic particle chain
formation on ferrofluid dynamics.
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